Random Graphs as Models of Networks
نویسنده
چکیده
The random graph of Erdős and Rényi is one of the oldest and best studied models of a network, and possesses the considerable advantage of being exactly solvable for many of its average properties. However, as a model of real-world networks such as the Internet, social networks or biological networks it leaves a lot to be desired. In particular, it differs from real networks in two crucial ways: it lacks network clustering or transitivity, and it has an unrealistic Poissonian degree distribution. In this paper we review some recent work on generalizations of the random graph aimed at correcting these shortcomings. We describe generalized random graph models of both directed and undirected networks that incorporate arbitrary non-Poisson degree distributions, and extensions of these models that incorporate clustering too. We also describe two recent applications of random graph models to the problems of network robustness and of epidemics spreading on contact networks.
منابع مشابه
Application of n-distance balanced graphs in distributing management and finding optimal logistical hubs
Optimization and reduction of costs in management of distribution and transportation of commodity are one of the main goals of many organizations. Using suitable models in supply chain in order to increase efficiency and appropriate location for support centers in logistical networks is highly important for planners and managers. Graph modeling can be used to analyze these problems and many oth...
متن کاملRandom intersection graphs and their applications in security, wireless communication, and social networks
Random intersection graphs have received much interest and been used in diverse applications. They are naturally induced in modeling secure sensor networks under random key predistribution schemes, as well as in modeling the topologies of social networks including common-interest networks, collaboration networks, and actor networks. Simply put, a random intersection graph is constructed by assi...
متن کاملIncidence cuts and connectivity in fuzzy incidence graphs
Fuzzy incidence graphs can be used as models for nondeterministic interconnection networks having extra node-edgerelationships. For example, ramps in a highway system may be modeled as a fuzzy incidence graph so that unexpectedflow between cities and highways can be effectively studied and controlled. Like node and edge connectivity in graphs,node connectivity and arc connectivity in fuzzy inci...
متن کاملRecent Progress in Complex Network Analysis: Models of Random Intersection Graphs
Experimental results show that in large complex networks such as internet or biological networks, there is a tendency to connect elements which have a common neighbor. This tendency in theoretical random graph models is depicted by the asymptotically constant clustering coefficient. Moreover complex networks have power law degree distribution and small diameter (small world phenomena), thus the...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملSampling Geometric Inhomogeneous Random Graphs in Linear Time
Real-world networks, like social networks or the internet infrastructure, have structural properties such as large clustering coefficients that can best be described in terms of an underlying geometry. This is why the focus of the literature on theoretical models for real-world networks shifted from classic models without geometry, such as Chung-Lu random graphs, to modern geometry-based models...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006